samedi 8 décembre 2012

Rayonnement ionisant

Un rayonnement ionisant est un rayonnement capable de déposer assez d'énergie dans la matière qu'il traverse pour créer une ionisation. Ces rayonnements ionisants, lorsqu'ils sont maîtrisés, ont beaucoup d'usages pratiques bénéfiques (domaines de la santéindustrie…) Mais pour les organismes vivants, ils sont potentiellement nocifs à la longue et mortels en cas de dose élevée. Les rayons ionisants sont de natures et de sources variées, et leurs propriétés dépendent en particulier de la nature des particules constitutives du rayonnement ainsi que de leur énergie.


Pouvoir de pénétration (exposition
 externe). Le 
rayonnement alpha (constitué
de noyaux d'
hélium) est simplement arrêté
par une feuille de papier. Le rayonnement
bêta
 (constitué d'électrons ou de positrons)
 est arrêté par une plaque d'
aluminium. Le
 
rayonnement gamma (constitué de photons
 très énergétiques) est atténué (et non
 stoppé) quand il pénètre de la matière
dense, ce qui le rend particulièrement
dangereux pour les organismes vivants. Il
 existe d'autres types de rayonnements
 ionisants ; ces trois formes sont souvent
associées à la 
radioactivité.





Principaux rayonnements ionisants


Type de rayonnementRayonnement ionisantChargeélémentaireMasse(MeV/c2)
Rayonnements électromagnétiquesIndirectement ionisantRayonnement ultraviolet00
Rayon X
Rayon gamma
Rayonnements particulairesNeutron0940
Directement ionisantElectron /particule β--10,511
Positon /particule β++10,511
Muon-1106
Proton+1938
Ion 4He / particule α+23730
Ion 12C+611193
Autres ionsVariableVariable

Les rayonnements les plus énergétiques transfèrent assez d’énergie aux électrons de la matière pour les arracher de leur atome. Les atomes ainsi privés de certains de leurs électrons sont alors chargés positivement. Les atomes voisins qui accueillent les électrons se chargent négativement.
Les atomes chargés positivement ou négativement sont appelés ions. Les atomes qui ont perdu au moins un électron sont devenus des ions positifs (cations), tandis que les atomes qui ont reçu au moins un électron sont devenus des ions négatifs (anions).
Les rayonnements capables de provoquer de telles réactions sont dits ionisants.
Par leur énergie, les rayonnements ionisants sont pénétrants, c’est-à-dire qu’ils peuvent traverser la matière. Le pouvoir de pénétration dépend du type de rayonnement et du pouvoir d'arrêt de la matière. Cela définit des épaisseurs différentes de matériaux pour s'en protéger, si nécessaire et si possible.

Particules α : noyaux de l'4He

Pénétration faible. Les particules α sont émises à une vitesse avoisinant les 20 000 km/s. Cependant étant lourdes et chargées électriquement, elles sont arrêtées très facilement et rapidement par les champs électromagnétiques et les atomes composant la matière environnante. Une simple feuille de papier suffit à arrêter ces particules.

Particules β- : électrons

Pénétration moyenne. Les particules β- sont des électrons. Ces derniers sont émis avec des énergies allant de quelques keV à quelques MeV. Ils peuvent donc atteindre des vitesses élevées souvent relativistes. Cependant, chargés électriquement, ils vont être arrêtés par la matière et les champs électromagnétiques environnants. Une feuille d’aluminium de quelques millimètres peut arrêter les électrons. Un écran d'un centimètre de plexiglas arrête toutes les particules bêta d'énergie inférieure à 2 MeV.

Particules β+ : positrons


La pénétration est semblable à celle des électrons. Mais à la fin de son parcours, un positron s’annihile avec un électron rencontré sur son passage en formant deux photons gamma de 511 keV chacun, ce qui ramène le problème au cas du rayonnement gamma.

Rayonnements X et γ


Pénétration très grande, fonction de l’énergie du rayonnement et de la nature du milieu traversé.
Chaque matériau est ainsi caractérisé par une couche de demi-atténuation qui dépend de sa nature, du type de rayonnement et de l'énergie du rayonnement. La couche de demi-atténuation (ou épaisseur moitié) est l'épaisseur nécessaire pour réduire de moitié la valeur du débit de dose de rayonnements X ou γ. On définit selon le même principe une épaisseur dixième, qui ne laisse passer que 10 % du débit de dose ; par exemple, en radioprotection, un écran dixième en plomb (matière très utilisée car très efficace) a une épaisseur de 50 mm.

Effets des rayonnements ionisants sur l'organisme

Un rayonnement qui pénètre dans la matière interagit avec les éléments du milieu et transfère de l’énergie. Un rayonnement ionisant possède assez d'énergie pour créer des dommages dans la matière qu'il traverse. Un rayonnement ionisant atteignant un organisme vivant peut endommager ses constituants cellulaires (ADNorganites). Or, tous les jours, nous sommes exposés à une faible dose de rayonnement. Heureusement, dans ces conditions, des mécanismes intra-cellulaires permettent de réparer les lésions produites. En revanche, en cas d'exposition à de fortes doses, ces mécanismes sont dépassés et peut alors apparaître un dysfonctionnement de l'organisme, une pathologie voire la mort.
( source : Wikipédia )



Aucun commentaire: