samedi 24 août 2013

Accélération laser-plasma ( message récupéré )

11 août 2013
En focalisant un laser de puissance sur une cible, il est possible de créer des faisceaux de particules aux propriétés particulièrement originales (brièveté, énergie, émittance, charge). Lors de cette interaction du faisceau laser avec la matière, des champs électriques extrêmes sont produits.

Les expériences d'interaction laser-plasma permettent d'accélérer deux types de particules : les électrons et les protons. Ces deux disciplines sont présentées dans la suite

Mécanismes d'accélération

Différentes méthodes ont été proposées pour accélérer les électrons par laser.En voici un résumé :

Le battement d'ondes

Ce mécanisme nécessite deux impulsions laser contre-propagatives de pulsation voisine ω1 et ω2 dont la différence de fréquence est proche de la fréquence plasma (ωp ~ ω1-ω2). Le recouvrement de ces deux impulsions laser génère un battement d'ondes résonnant avec l'onde plasma.

Le sillage auto-résonant

L'apparition de laser de forte intensité et de durée d'impulsion courte (500 fs) contenant une forte énergie (100 J) a donné accès aux comportements non-linéaires des plasmas. Les effets combinés de l'autofocalisation et de l'automodulation de l'enveloppe laser par la perturbation de densité électronique provoquent la modulation de l'impulsion laser en une succession d'impulsions laser séparés par la longueur d'onde plasma. On obtient ainsi des impulsions résonantes avec l'onde plasma, comme dans le cas du battement d'onde précédemment décrit.

Le sillage forcé

Le développement de lasers très intenses ( W/cm2), très courts a permis de franchir une nouvelle étape et de mettre en évidence un mécanisme d'accélération plus efficace : le sillage forcé. Ces lasers, de plus faible énergie, ont une cadence de tir plus élevée (10 tir/s au lieu d'un tir toutes les 20 minutes) et ainsi ils permettent d'envisager des applications futures à ces nouvelles sources.

Ici, les ondes sont amplifiées à des niveaux d'amplitudes extrêmes (régime non-linéaire) produisant un paquet d'électrons très bref et très énergétique. Il n'est alors plus nécessaire d'injecter des électrons dans le plasma. Ce sont les électrons du plasma eux-mêmes qui se font piéger. Dans ce régime d'impulsion courte, le chauffage du plasma est bien moins important, et les ondes peuvent atteindre des amplitudes plus élevées proches de la valeur de déferlement froid.

Des faisceaux d'électrons avec des spectres maxwelliens, produits par des faisceaux ultra courts ont été produits dans de nombreux laboratoires dans le monde : au LBNL15, au NERL16, et en Europe par exemple au LOA 17, ou au MPQ en Allemagne18.

Régime de la bulle

Ce dernier terme cache une révolution dans le domaine de l'accélération d'électrons par interaction laser-plasma : pour la première fois des faisceaux d'électrons avec un spectrequasi-monoénergétique ont été produits. Jusqu'à présent, les faisceaux d'électrons avaient toujours un spectre maxwellien (décroissance exponentielle). La présence d'un pic à haute énergie permet d'envisager une multitude d'applications car ses propriétés sont excellentes en sortie de plasma et restent excellentes au cours de la propagation du faisceau. Ce n'était pas le cas avec un faisceau maxwellien : le filtrage par un monochromateur aurait considérablement diminué le flux d'électrons à haute énergie, faisant chuter le rendement de l'accélération.

En réalité, ces résultats avaient été prédits par des simulations PIC 3D qui ont donné naissance à cette dénomination : Régime de la bulle19. Dans ce régime, les dimensions du laser sont plus courtes que la longueur d'onde plasma dans les trois directions de l'espace. Ainsi, l'impulsion laser focalisée ressemble à une bille de lumière d'un rayon typique de 10 microns. La force pondéromotrice de cette impulsion est tellement forte qu'elle expulse les électrons à son passage. Derrière l'impulsion laser, on obtient alors une cavité entourée d'une sur-densité électronique. À l'arrière de cette structure des électrons sont injectés vers la cavité et accélérés dans cette structure. Cette cavité est attractive pour les électrons, car elle contient les ions dont les déplacements sont négligeables à ces échelles detemps. La signature de ce régime est l'apparition d'un spectre d'électrons quasi-monoénergétique. Ceci contraste avec les résultats précédents. Ceci provient de la combinaison de différent facteurs :

- L'injection des électrons dans la cavité est différente du déferlement observé dans le sillageauto-modulé et le sillage forcé (cela ne provient pas du déferlement de la structure accélératrice).
- La structure accélératrice reste stable durant l'accélération aussi longtemps que le laser est suffisamment intense.
- Les électrons piégés se trouvent derrière l'impulsion laser. Ils n'interagissent plus avec le champ électrique transverse du laser.

Plusieurs laboratoires ont obtenu des structures quasi-monoénergétiques : en France, en Angleterre et aux États-Unis, puis en Allemagne et au Japon avec des conditions expérimentales assez différentes (la durée d'impulsion était plus longue que la période plasma). La description de ces résultats apparaît dans la section suivante.

Résultats expérimentaux

Ces faisceaux d'électrons correspondent à des courants crêtes très élevés (typiquement 10 kA). La source d'électrons possède une taille très petite, équivalente à la taille de laser focalisé (de quelques microns à quelques dizaines de microns en général, suivant l'optique de focalisation utilisée). La divergence du faisceau d'électrons varie entre 3 mrad à 10 mrad suivant les articles. Une autre propriété essentielle de ces sources est leur courte durée. La durée du paquet d'électrons est estimée à moins de 100 fs en général à la sortie du plasma. Comme le spectre est piqué à une énergie élevée, ces électrons voyagent presque tous à la même vitesse et leur dispersion est faible. Par exemple, pour la mesure effectuée au LOA, la dispersion a été estimée à 50 fs/m au cours de la propagation. Ces paquets d'électrons peuvent alors sonder les phénomènes ultra-brefs.

En résumé, ces installations laser opérant à 10 Hz permettent maintenant de produire de faisceaux d'électrons quasi-monoénergétiques, brefs, de petites dimensions, de faible divergence, de faible émittance, de forte charge.

( source : Wikipédia )

Aucun commentaire: