mercredi 4 mars 2015

Neurosciences computationnelles

Les neurosciences computationnelles sont un champ de recherche des neurosciences qui s'applique à découvrir les principes computationnels des fonctions cérébrales et de l'activité neuronale, c'est-à-dire des algorithmes génériques qui permettent de comprendre l'implémentation dans notre système nerveux central de nos fonctions cognitives. Ce but a été défini en premier lieu par David Marr dans une série d'articles fondateurs.

On est devant visant à comprendre le cerveau à l'aide de modèles des sciences informatiques et combiner expérimentation avec le travail théorie et les simulations numériques.

Historiquement, un des premiers modèles introduits en neurosciences computationnelles est le modèle « intègre et tire » par Louis Lapicque en 1907. Cet article très influent en neurosciences théoriques et computationnelles introduit un des modèles les plus populaires encore à l'heure actuelle. Cet article a été traduit en anglais à l'occasion du centenaire de sa parution.

Les neurosciences computationnelles visent donc à développer des méthodes de calcul pour mieux comprendre les relations complexes entre la structure et la fonction du cerveau et du système nerveux en général. Outre une meilleure connaissance de la cognition et de ses dysfonctionnements, cette démarche permet d'appliquer un transfert de ces connaissances neuroscientifiques en proposant de nouvelles méthodes de traitement de l'information et des dispositifs technologiques innovants. Elle peut s'appliquer à différents niveaux de description, de la molécule au comportement, et nécessite l'intégration constructive de nombreux domaines disciplinaires, des sciences du vivant à la modélisation.

Les neurosciences computationnelles ne sont pas incluses dans la bio-informatique dont le champ recouvre les applications informatiques en biochimie, génétique, et phylogénie.

( source : Wikipédia )

Aucun commentaire: